Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves
نویسندگان
چکیده
In the developing mammalian retina, spontaneous waves of action potentials are present in the ganglion cell layer weeks before vision. These waves are known to be generated by a synaptically connected network of amacrine cells and retinal ganglion cells, and exhibit complex spatiotemporal patterns, characterized by shifting domains of coactivation. Here, we present a novel dynamical model consisting of two coupled populations of cells that quantitatively reproduces the experimentally observed domain sizes, interwave intervals, and wavefront velocity profiles. Model and experiment together show that the highly correlated activity generated by retinal waves can be explained by a combination of random spontaneous activation of cells and the past history of local retinal activity.
منابع مشابه
Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry
Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental e...
متن کاملSynaptic and Extrasynaptic Factors Governing Glutamatergic Retinal Waves
In the few days prior to eye-opening in mice, the excitatory drive underlying waves switches from cholinergic to glutamatergic. Here, we describe the unique synaptic and spatiotemporal properties of waves generated by the retina's glutamatergic circuits. First, knockout mice lacking vesicular glutamate transporter type 1 do not have glutamatergic waves, but continue to exhibit cholinergic waves...
متن کاملAge-dependent homeostatic plasticity of GABAergic signaling in developing retinal networks.
Developing retinal ganglion cells fire in correlated spontaneous bursts, resulting in propagating waves with robust spatiotemporal features preserved across development and species. Here we investigate the effects of homeostatic adaptation on the circuits controlling retinal waves. Mouse retinal waves were recorded in vitro for up to 35 h with a multielectrode array in presence of the GABA(A) a...
متن کاملPeripheral and Central Inputs Shape Network Dynamics in the Developing Visual Cortex In Vivo
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps ...
متن کاملSlow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 19 شماره
صفحات -
تاریخ انتشار 1997